Search results for "Online machine learning"

showing 7 items of 7 documents

On the impact of forgetting on learning machines

1995

People tend not to have perfect memories when it comes to learning, or to anything else for that matter. Most formal studies of learning, however, assume a perfect memory. Some approaches have restricted the number of items that could be retained. We introduce a complexity theoretic accounting of memory utilization by learning machines. In our new model, memory is measured in bits as a function of the size of the input. There is a hierarchy of learnability based on increasing memory allotment. The lower bound results are proved using an unusual combination of pumping and mutual recursion theorem arguments. For technical reasons, it was necessary to consider two types of memory : long and sh…

Theoretical computer scienceActive learning (machine learning)Computer scienceSemi-supervised learningMutual recursionArtificial IntelligenceInstance-based learningHierarchyForgettingKolmogorov complexitybusiness.industryLearnabilityAlgorithmic learning theoryOnline machine learningInductive reasoningPumping lemma for regular languagesTerm (time)Computational learning theoryHardware and ArchitectureControl and Systems EngineeringArtificial intelligenceSequence learningbusinessSoftwareCognitive psychologyInformation SystemsJournal of the ACM
researchProduct

Organized Learning Models (Pursuer Control Optimisation)

1982

Abstract The concept of Organized Learning is defined, and some random models are presented. For Not Transferable Learning, it is necessary to start from an instantaneous learning; by a discrete way, we must form a stochastic model considering the probability of each path; with a continue aproximation, we can study the evolution of the internal state through to consider the relative and absolute probabilities, by means of differential equations systems. For Transferable Learning, the instantaneous learning give us directly the System evolution. So, the Algoritmes for the different models are compared.

Computer Science::Machine LearningComputational learning theoryWake-sleep algorithmActive learning (machine learning)business.industryComputer scienceCompetitive learningAlgorithmic learning theoryStability (learning theory)Online machine learningPursuerArtificial intelligencebusinessIFAC Proceedings Volumes
researchProduct

Active learning strategies for the deduplication of electronic patient data using classification trees.

2012

Graphical abstractDisplay Omitted Highlights? Active learning for medical record linkage is used on a large data set. ? We compare a simple active learning strategy with a more sophisticated variant. ? The active learning method of Sarawagi and Bhamidipaty (2002) 6] is extended. ? We deliver insights into the variations of the results due to random sampling in the active learning strategies. IntroductionSupervised record linkage methods often require a clerical review to gain informative training data. Active learning means to actively prompt the user to label data with special characteristics in order to minimise the review costs. We conducted an empirical evaluation to investigate whether…

Active learningComputer scienceActive learning (machine learning)Information Storage and RetrievalContext (language use)Health InformaticsSemi-supervised learningMachine learningcomputer.software_genreSet (abstract data type)Artificial IntelligenceBaggingData deduplicationElectronic Health RecordsHumansbusiness.industryString (computer science)Decision TreesOnline machine learningComputer Science ApplicationsData miningArtificial intelligenceMedical Record LinkageString metricbusinesscomputerAlgorithmsJournal of biomedical informatics
researchProduct

CN2-R: Faster CN2 with randomly generated complexes

2011

Among the rule induction algorithms, the classic CN2 is still one of the most popular ones; a great amount of enhancements and improvements to it is to witness this. Despite the growing computing capacities since the algorithm was proposed, one of the main issues is resource demand. The proposed modification, CN2-R, substitutes the star concept of the original algorithm with a technique of randomly generated complexes in order to substantially improve on running times without significant loss in accuracy.

Weighted Majority AlgorithmTheoretical computer scienceRule inductionComputer sciencePopulation-based incremental learningStability (learning theory)Online machine learningProbabilistic analysis of algorithmsAlgorithm designStar (graph theory)Algorithm2011 16th International Conference on Methods & Models in Automation & Robotics
researchProduct

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

ORGANIZED LEARNING MODELS (PURSUER CONTROL OPTIMISATION)

1983

Abstract The concept of Organized Learning is defined, and some random models are presented. For Not Transferable Learning, it is necessary to start from an instantaneous learning; by a discrete way, we must form a stochastic model considering the probability of each path; with a continue aproximation, we can study the evolution of the internal state through to consider the relative and absolute probabilities, by means of differential equations systems. For Transferable Learning, the instantaneous learning give us directly the System evolution. So, the Algoritmes for the different models are compared.

Computer Science::Machine LearningStochastic modellingActive learning (machine learning)business.industryDifferential equationPath (graph theory)Control (management)Online machine learningPursuerArtificial intelligenceState (computer science)businessMathematics
researchProduct

Non Linear Fitting Methods for Machine Learning

2017

This manuscript presents an analysis of numerical fitting methods used for solving classification problems as discriminant functions in machine learning. Non linear polynomial, exponential, and trigonometric models are mathematically deduced and discussed. Analysis about their pros and cons, and their mathematical modelling are made on what method to chose for what type of highly non linear multi-dimension problems are more suitable to be solved. In this study only deterministic models with analytic solutions are involved, or parameters calculation by numeric methods, which the complete model can subsequently be treated as a theoretical model. Models deduction are summarised and presented a…

PolynomialWake-sleep algorithmbusiness.industryComputer scienceOnline machine learningType (model theory)Machine learningcomputer.software_genreExponential functionNonlinear systemDiscriminantArtificial intelligenceTrigonometrybusinesscomputer
researchProduct